

Tool for Sustainability Impact Assessment (ToSIA) 1. Introducing the Concept

Marcus Lindner, Tommi Suominen, Taru Palosuo, Jordi Garcia-Gonzales, Manfred Lexer, Bernhard Wolfslehner, Risto Päivinen

ToSIA approach to Sustainability Impact Assessment of Forest-Wood Chains

Sustainability Indicators

Economic

Gross value added

Production costs

Resource / material use

Total production

Investment and research & development

Environmental

Energy generation and use

Greenhouse gas emissions and carbon stocks

Transport distance and freight

Water use

Soil, water and air pollution

Generation of waste

Forest biodiversity

Forest resources

Social

Employment

Wages and salaries

Occupational safety and health

Education and Training

www.eforwood.com www.eforwood.com

ToSIA approach to Sustainability Impact Assessment of Forest-Wood Chains

ToSIA approach... (basic principles)

ToSIA aggregates indicator results along the FWC

The analytical framework

FWC is a chain of processes

Defining the structure of a forest value chain

Sustainability Indicator Calculation

- 1. Take indicator value per unit of reference flow
- 2. Multiply with material flow through a process
- 3. = sustainability indicator value for the process

Aggregation of indicator results

Employment (ID 003895)

 Identify same indicator for different processes in calculated chains

 Sum up indicators of the same ID in a calculated chain

TOTAL

42.5 person hours

50 person hours

Sustainability Impact Assessment

Impact of changing sub-chain A to sub-chain B on social indicator 'employment' =

Employment hours B – employment hours A =

$$50 - 42.5 = +7.5$$

How to compare changes in different indicator values?

If the impact on employment is + 7,5 h but at the same time waste generation increases +2%,

is the total impact positive or negative?

Sustainability Impact Evaluation

Multi-Criteria
Analysis (MCA)

compares apples and oranges

Cost-Benefit Analysis (CBA)

Converts apples and oranges into €

Software for Weighting of indicators

Software for Ranking of alternatives

ToSIA perspectives: How you look at things makes a lot of difference!

Different ToSIA perspectives at sustainability impact assessment

I will become a nice table...

lused to live in Northern Sweden...

...in my earlier lives I had other carreers

We grew up only 35 km from here...

I will be read in downtown London!

"forest-defined"

"product-defined"

"industry-defined"

What can ToSIA be used for?

Questions to be answered relate to economic, social and environmental sustainability impacts of modified FWCs under the influence of, for example:

- Changes in Policy
 - forest conservation
 - increasing utilization of woody biomass for bio-energy
- Changes in Technology of the FWC
 - harvesting methods
 - transport alternatives
 - minimal-pollution technology in industrial processing

What can ToSIA be used for?

Questions to be answered relate to economic, social and environmental sustainability impacts of modified FWCs under the influence of, for example:

- Changes in Consumer Behaviour
 - increased utilization of wood materials in housing construction
 - higher recycling rates for paper and wood based products
- Changes in External Markets
 - higher energy prices
 - collapsing round wood imports from Russia

ToSIA application: comparing two different bio-energy supply chains for heating a private household

- 1) Production of pellets used in single family homes
- 2) Chipping of biomass used in single family home via district heating

Comparison of two chains

Indicators

Indicators	Units	
1. Production costs		euro
2. Resource / Material use		m3
3. Total heat consumption		MJ
4. Employment	4.1 male	person a
	4.2 female	person a
5. Wages and Salaries	5.1 male	euro
	5.2 female	euro
6. Safety and Health	6.1 Occupational accidents non-fatal	accidents
	6.1 Occupational accidents fatal	accidents
7. Greenhouse Gas Emiss	tons CO2 eqv.	
8. Maintenance of soil quality		kg
9. Transport (road)	9.1 transport distance road	tkm
	9.2 freight volume	tons
10. Energy	10.1 renewable energy use	MJ
	10.2 non renewable energy use	MJ
	10.3 electricity from the grid use	MJ
	10.4 generation from renewables	MJ
11. Average carbon storage	tons	

Results of the comparison

 a) effects of additional extraction of forest biomass on sustainability

Indicator		P Chain	P&C Chain	increase in %	Unit
1. Productio	n costs	318 737	595 078	87	euro
3. Total heat consumption		5 604 318	1 6491 609	194	MJ
4. Employme	ent	0,99	2,18	120	person a
7. Greenhou	ise Gas Emissions	63	126	101	tons CO2 eqv.
8. Maintenar	nce of soil quality	0	5 382	n.a.	kg
9. Transport	9.1 transport distance	272 416	363 846	34	tkm
	9.2 freight transported	1 679	2 822	68	tons
10. Energy	10.1 energy use	1 942 126	2 348 295	21	MJ
	10.2 heat generation	6 404 935	20 725 555	224	MJ

Based on:

- one reference year (2007)
- a certain land area (1803 ha)

Results, production costs

Results, energy

ToSIA results

- a) Pellet and Chips chain
- b) Pellet chain

Indicator	P & C Chain	P Chain
GHG bal.	★	→
Employment	7	→
Energy bal.	^	4
Costs	^	→
Soil maint.	↓ ↑	^

ToSIA Concept – Questions?

Time for discussion...

