

Project no. 518128

EFORWOOD

Tools for Sustainability Impact Assessment

Instrument: IP

Thematic Priority: 6.3 Global Change and Ecosystems

Deliverable PD2.5.3 Report of workshop on "methodologies to improve and extend models for forest sustainability analysis"

Due date of deliverable: Month 20 (moved from Month 18) Actual submission date: Month 27

Start date of project: 011105 Duration: 4 years

Organisation name of lead contractor for this deliverable: ISA

Final version

Proje	Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)		
	Dissemination Level		
PU	Public	Х	
PP	Restricted to other programme participants (including the Commission Services)		
RE	Restricted to a group specified by the consortium (including the Commission Services)		
CO	Confidential, only for members of the consortium (including the Commission Services)		

Table of Contents

ABSTRACT	3
EXECUTIVE SUMMARY	4
1 INTRODUCTION AND BACKGROUND	5
2 DISCUSSION OF TERMINOLOGY TO BE USED UNDER WP2.5	5
3 PRESENTATION OF THE MODELS AND REGIONAL CASES	6
3.1 Portuguese production forest region (MBC, SB and PS)	6
3.2 Maritime pine in Aquitaine-France (CM and MN)	6
3.3 Baden-Württemberg in Germany (JZ, PD and KT)	7
3.4 Westernbotten in Sweden (EV)	8 8
3.6 Scotland (MDL)	
3.7 Oak in Lorraine region (JPS and JFD)	9
4 DISCUSSION ON THE DEVELOPMENT OF SIMULATORS	9
4.1 Presentation/Demonstration of the GEIS and SADFLOR simulators (JB)	
4.2 Presentation/demonstration of the ESCEN simulator (AT)	
4.3 European simulator (EFISCEN)	10
5 CONCLUSIONS	11
6 REFERENCES	11
ANNEXE 1 - LIST OF PARTICIPANTS	
ANNEXE 2 – DEFINITIONS AND TERMINOLOGY	15
ANNEXE 3 – PORTUGUESE PRODUCTION FOREST REGION	
ANNEXE 4 – AQUITAINE REGION	
ANNEXE 5 – BADEN-WÜRTTENBERG REGION IN GERMANY	
ANNEXE 6 – VESTERNBOTTEN REGION IN SWEEDEN	59
ANNEXE 7 – CATALONIA REGION IN SPAIN	69
ANNEXE 8 – CRAIK FOREST IN SCOTLAND	78
ANNEXE 9 – OAK IN LORRAINE REGION	
ANNEXE 10 – IMPROVEMENT OF THE EFISCEN MODEL	105

WP 2.5

Deliverable PD 2.5.3 Report of workshop on "methodologies to improve and extend models for forest sustainability analysis"

Authors: Margarida Tomé, Véronique Cucchi, Celine Meredieu Date: September 30, 2007

Abstract

This document reports the presentations and discussions that were held during the workshop organized by WP2.5 in Villanova, Spain. The workshop had three objectives: 1) to analyse the forest growth models available for each one of the Reference forests, in order to assess how well the existing models predict the EFORWOOD sustainability indicators selected in D2.5.2 that can be estimated, either directly or indirectly, with models; 2) to discuss methodologies for the implementation of the selected models into regional simulators; 3) to discuss the methodologies that are planned to improve the existing European simulator EFISCEN and to analyse the possible links and contributions of the WP2.5 partners to EFISCEN. The present document includes the minutes of the workshop and the presentations made during the meeting which were the basis of our discussions.

Executive summary

During this workshop, we clarified questions about the use of growth models in regional and national simulators. First we reviewed terminology concerning forest modelling tools. We agreed about some definitions and about the fact that description of available models should be improved. It was decided that the models should be described in the IEFC database after some modifications, proposed during the workshop, will be made on the database. Second, every partner made a presentation about the selected reference region and the models available.

To start the discussion about simulators, inputs for models were examined. They can be constituted by NFI data; two examples were discussed, in Aquitaine region (France) and Baden-Württemberg (Germany). These examples highlight problems linked to the use of this type of data and possible solutions, as correctives functions, or plots aggregation to deal with discrete information. Solutions for using NFI data as inputs for models and regional simulators will probably be local as data and protocols are heterogeneous, depending on country.

The discussion about regional simulators was centred around two demonstrations, the regional simulators developed for Catalonian forests and the landscape simulator/decision support system developed in Portugal for application at the management unit level. After some discussions around the methodologies that must be used for the development of simulators it was decided that it will be possible to have different simulators in EFORWOOD. It will be good if partners using similar models will develop common systems, but there is no requirement about the methodologies selected by each partner. The only requirement is towards the main functionalities as outputs and links to ToSIA. They should also have common capacities to simulate various scenarios and to produce values for indicators. However all the indicators will be not predicted by every regional simulator, but these tools will help us to identify the possible follows and improvements needed. Simulators should be considered as a valuable method to evaluate the European simulator EFISCEN at the regional level. In this way, the most important thing for EFISCEN is to develop for it volume growth functions.

The present document is constituted by the minutes of the workshop and the presentations made during the meeting which were the basis of our discussions.

Key words: growth models, regional simulators, EFISCEN, input data, NFI data, improvement, scenarios, indicators' values, volume growth functions.

1 Introduction and background

The workshop on "methodologies to improve and extend models for forest sustainability analysis" was organized in the sequence of previous work that identified the indicators of sustainable forest management that can be estimated with the models (Tomé et al., 2006). The objective of the workshop was the planning of the work to be undertaken in order to improve the selected forest models to be able to provide estimates of the indicators selected in Tomé et al. (2006).

The workshop had five sessions:

- 1. Discussion of terminology to be used under WP2.5
- 2. Presentation of the models and regional cases
- 3. Discussion on the development of simulators
 - a) Input data for simulators
 - b) Regional simulators
 - c) European simulator (EFISCEN)
- 4. Planning of future activities

The list of participants is included as annexe 1.

2 Discussion of terminology to be used under WP2.5

The subject was initiated with a presentation by MT (annexe 2).

Summary of the presentation and related discussions:

- Introduction and objectives of the workshop.
- Discussions about definitions and terminology related to the forest modelling tools: state variables, driving, principal and derived variables; forest growth models, forest growth models modules, sub-modules and components; stand, landscape and regional simulators; decision support systems. Modifications made directly on the ppt file.
- Discussions about the framework for description of models that will be used in the regional simulators: the excel sheet should be modified and resent to the WP partners before the end of the current month (February). IEFC database is too flexible, we need a more strict form to describe the models. Possibility to develop our own database?

Decisions:

- *Corrections on definitions and terminology (already included in annexe 2)*
- Framework for models description: modifications according to previous forms, more strict forms needed, improved forms will be re-sent to all WP partners, assumptions made for models building will be added as information in the references
- Deliverable 2.5.2 should include all the details discussed.

3 Presentation of the models and regional cases

The objective of the presentation made by each partner was to briefly describe the region, the models that will be used in the regional simulators, identifying the need for improvement in order to assess the indicators selected in PD2.5.2 as well as the planned improvements. The implementation of the models into regional simulators should also be indicated.

3.1 <u>Portuguese production forest region</u> (MBC, SB and PS)

- Description of the Portuguese production forest region (presentation in annexe 3): Main species are *Eucalyptus globulus*, *Pinus pinaster*, *Quercus suber* that occur mainly as pure stands; mixed species stands are also present, eucalyptus and pine are mainly even-aged but uneven-aged structures occur for the three species
- <u>Forest growth models:</u> Globulus 3.0 (whole stand model for eucalyptus), GLOB-3PG (process-based model for eucalyptus); Modispinaster (whole stand model with simulation of diameter distributions for maritime pine), Suber (individual tree model for cork oak, also predicts cork yield)
- <u>Planned improvements on models:</u> development of a sub-model for biomass prediction in maritime pine, as well as a sub-model for initialization after clearcut and/or in the plantation of new areas. Development of economic models for eucalyptus and maritime pine
- <u>Weaknesses detected on models:</u> For all models: non-wood goods (except cork) and forest damage are not predicted.
- <u>Problems anticipated for simulators:</u> predicting growth of mixed stands as the models available were developed for pure even-aged stands
- <u>Simulators:</u> stand and regional simulators are available but there is the need to improve them, namely to add modules for the estimation of indicators that can be indirectly estimated.

3.2 Maritime pine in Aquitaine-France (CM and MN)

- <u>Description of the Aquitaine region (presentation in annexe 4):</u> Main species is maritime pine, even-aged stands, stands are more and more planted compared to seedling and natural regeneration
- <u>Forest growth models:</u> 4 models for Maritime pine: 1) the whole stand growth model PP1 for south-western of France except the coastal dune area, 2) the whole stand growth model of Lemoine for coastal dunes, 3) the Afocel growth model and 4) the individual tree growth model PP3 for south-western of France except the coastal dune area with the Capsis 4 stand growth simulator. Some additional models exist: biomass

model per compartment, carbon content, wind throw risk model, partly branch, fibre and solid wood models.

- <u>Planned improvements on models:</u> development of branch and wood quality models.
- Weaknesses detected on models: not presented at the workshop
- <u>Problems anticipated for simulators:</u> NFI data has been used: to calculate difference in carbon balance between 2 national inventory dates; however the use of these data as input for the simulators is not straightforward, needs corrective functions
- Simulators: regional simulator must be developed under EFORWOOD

3.3 Baden-Württemberg in Germany (JZ, PD and KT)

- Description of the Baden-Württemberg region (presentation in annexe 5): Most stands are pluriespecific, even-aged and uneven-aged stands
- <u>Forest growth models:</u> Extrapolation of NFI data with the WEHAM model (distanceindependent tree model, plot/stand level)
- <u>Planned improvements on models:</u> The intended improvements on this model are closely related to its weakness described below. At present the growth potential is predicted according to yield tables developed for the region. However, diameter increment is not directly related to stand density or other competition measures. Thus, it is planned to include a diameter growth model sensitive to stand density in order to model the impact of alternative forest management regimes.
- <u>Weaknesses detected:</u> No dependency of diameter growth to competition or density measures included in the model. The model is developed in order to predict the timber flows coming from a region for a period of 30 years which is only about one third of the common production period for Norway spruce and about one fourth for European beech, respectively.
- <u>Problems anticipated for simulators:</u> Available data for input are NFI data (Bitterlich plots). There are problems due to differences in protocols between German regions, particularly the size of the grid. The number of plots is high (ca. 13000) but each plot contains few trees, corresponding to a discrete information. It is a problem to use these data for models and optimization. A solution may be to aggregate plots to create an "artificial stand", but the method for aggregation is not yet defined.
- <u>Simulators:</u> There is no regional simulator readily available. The presented model might serve as the basis to develop a simulator within the EFORWOOD project. In this matter it has important advantages since it is already linked to an assortment model and thus allows for basic economic calculations. However, it is required that the addressed weakness in regard to properly reflect alternative silvicultural operations is overcome.

3.4 Westernbotten in Sweden (EV)

- Description of the Västerbotten region (presentation in annexe 6):

Main species are *Pinus sylvestris*, *Picea Abies* and *Betula Pubescens*, mostly in stands dominated by one of the species; mixed species stands are also present in the region. Detailed description of volume, area and wood production for main species in this region is given on annexe 6.

- <u>Forest growth models:</u> Models are available for all the species and forest types, both stand models and distance-independent individual tree models
- <u>Planned improvements on models</u>: Models for recreation, habitat suitability, climate change, soil carbon and wood quality will be implemented in the new simulator Heureka during 2008 and 2009.
- <u>Weaknesses detected:</u> Risk and effects of forest damages are not implemented in the simulators, i.e. models for storm, wind, insects and fungi.
- <u>Problems anticipated for simulators:</u> All new models not completely tested and ready to use in the simulator until 2009.
- <u>Simulators:</u> the models for forest production have been implemented in simulators, the HUGIN and the HEUREKA systems

3.5 Catalonia in Spain (JJG and MP)

- <u>Description of the Catalonia region (presentation in annexe 7)</u> Main species are *Pinus sylvestris*, *Pinus halepensis* and *Quercus ilex*. Wood is not the main forest product, others services as hunting, mushrooms are very important.
- <u>Forest growth models:</u> growth and yield models development was based on NFI data, therefore all the forest types are covered. The approach is an individual tree and stand level approach. Additional models exist: fire risk model (occurrence and damage), mushroom yield model, biomass, scenic beauty.
- <u>Planned improvements:</u> take into account fires to limit the overestimation of growth; moment method to obtain diameter distribution.
- <u>Weaknesses detected:</u> habitat suitability, timber quality, water quality...
- Problems anticipated for simulators:
- <u>Simulators:</u> forest growth models are implemented into the regional simulator ESCEN that projects each individual tree plot. The decision support system RODAL, that uses a distance-independent empirical tree growth model for pluriespecific forest, is also available.

3.6 Scotland (MDL)

Description of the Scottish region – Craik forest (presentation in annexe 8)

Main species is Sitka spruce, even-aged stands predominate in the area. The simulator will also consider Scots pine, Lodgepole pine and Birch

- <u>Forest growth models:</u> Forest Yield a set of stand level models suitable for even-aged stands and originally produced as 'look-up' tables
- <u>Planned improvement on models:</u> adapted to allow greater flexibility in interpretation
- Weaknesses detected: difficulty in modelling and/or irregular stands
- <u>Problems anticipated for simulators:</u> Linking to GIS based landscape simulator. Also weaknesses noted above
- <u>Simulators:</u> a landscape simulator for the forest is available for the Craik forest, a GIS based modelling tool that emphasises the relations between forest management and indicators (economic, environment, social). The example presented shows a study of the relations between forest management and presence of an endangered species, the red squirrel, (environmental indicator), the recreation (social indicator) and the timber value (economic indicator). The system allows the study of factors which allow the scattering of the red squirrel, by mapping habitat suitability (connectivity), prediction of potential density of animals. Recreation is studied by mapping intensity of frequenting areas and roads by people. The tool also provides timber value: yield classes, elevation, soils, forecast volume of Sitka spruce, diameter classes, minus by costs,...

3.7 Oak in Lorraine region (JPS and JFD)

- Description of the Oak in Lorraine region (presentation in annexe 9) Main species are Fir, Spruce, Beech and Oaks
- <u>Forest growth models:</u> growth and yield models with stand growth and individual tree growth models (Fagacées)
- <u>Planned improvement on models:</u> growth data from both regions are being used to improve existing models
- Weaknesses detected: not yet defined
- Problems anticipated for simulators: not yet known
- <u>Simulators:</u> not existing at this time but a simulator for the Lorraine region will be developed under EFORWOOD

4 Discussion on the development of simulators

After the presentations describing the reference regions as well as the models available, the discussions were focused on the development of simulators. Several problems were discussed, namely:

- How to use NFI data as input for the simulators
- Which variables should be used as drivers
- Methodologies to develop regional simulators
- Methodologies to improve the European simulator EFISCEN

As a starting point to the discussions, two presentations/demonstrations were done by Portuguese (JB) and Catalonian (AT) partners.

4.1 Presentation/Demonstration of the GEIS and SADFLOR simulators (JB)

- Presentation of the Generic Environment Impact Statement (GEIS): a DSS example used for Minnesota. It uses Hoganson-Rose model (Lagrangian relaxation): breaking down of a complex problem into sub component.
- DSS SADFLOR (demonstration): it is a landscape simulator, each individual stand is locally identified into a GIS system. Several management alternatives are simulated for each stand and several optimization algorithms can be used to select the best alternative to each stand in order to achieve pre-determined objectives (maximization of net present value, for instance) while satisfying a certain number of restrictions (maximum and minimum volume harvest, maximum area of harvest, etc). The processes are at stand level

4.2 Presentation/demonstration of the ESCEN simulator (AT)

- Presentation of the ESCEN simulator, developed in collaboration with NFI services. Permanents plots allow the development of individual tree models. For each plot, it can visualize each tree.
- Possibility to visualize the state at the inventory date and future state according to silvicultural options.
- Simulations can be performed according to scenarios at stand level.
- Fire models also included.
- This simulator is not able to propose scenarios according to target values as annual volume to cut for instance (it is not an optimization approach): they have to test various scenarios and compare them.

4.3 European simulator (EFISCEN)

Presentation by IW (presentation in annexe 10):

- Input data for the new EFISCEN are country or regional level data. Data should be spatialized through a 1 km x 1 km grid. Data sources are plot data all over Europe: NFI plots and ICP level I plots. The grid is translated into maps of tree species based on plot data and ancillary data as elevation, soil map, average rainfall. Regression and kriging are being considered as a means to spatialize the data. Each species presence is predicted. In each cell, presence/absence for species.
- Demonstration: mapping per species with NFI and ICP data, presence/absence, randomly remove 10% of the data for validation. The map showed contains some errors as Abies species in Aquitaine! Locally in each cells, the results show some errors but globally the distribution is ok. Prediction of tree number and mean diameter on each cell for even-aged forests from inputs as age and volume is being explored.

5 Conclusions

At the end of the workshop some conclusions, decisions for the future could be found:

- The models selected to be used in the regional simulators should be described in the IEFC database that must be modified according to the conclusions of the workshop. Deliverable D2.5.2 (Tomé et al., 2007), about to be finished, should include a detailed description of the structure of the database.
- There is no need to standardize the regional simulators in what concerns methodologies. But the development of common simulators between partners who use similar models is highly desirable. The standardization among regional relates to outputs and links to ToSIA and also with the possibility to simulate various scenarios and to produce values for indicators.
- Concerning indicators there is not possible to cover all indicators with every regional simulators. The idea is to include as many indicators as possible in the regional simulators. However some indicators, more difficult to estimate, will be exemplified in some cases such as Scotland and Catalonia. One objective for the development of regional simulators is the identification of the indicators that are possible to estimate and plan the research for the future.
- We consider the regional simulators as a valuable method to evaluate EFISCEN at the regional level. The methodology to be used to improve EFISCEN is not yet definitive therefore the contribution of the partners to it has not yet been defined. One idea will be to use local data to develop volume growth functions that can be used for EFISCEN.

6 References

Tomé, M., Meredieu, C., Borges, J., Nabuurs, G.J., Hasenauer, H., 2006. Report on models requirements and outputs. Deliverable D2.5.1 from the EFORWOOD project.

Tomé, M, Baptista-Coelho, M, Meredieu, C. and Cucchi, V. 2007. Framework for the description of forest modelling tools currently available with identification of their ability to estimate sustainability indicators. Deliverable D2.5.2 from the EFORWOOD project.

ANNEXE 1 - List of participants

List of registered participants: - 26 persons

Names	Organisation/institution
Baptista-Coelho, Marta (MBC)	ISA
Barreiro, Susana (SB)	ISA
Borges, José (JB)	ISA
Carnus, Jean-Michel (JMC)	INRA
Cucchi, Véronique (VC)	INRA
De Loanni, Monica (MDL)	FR
Dhôte, Jean-François (JFD)	INRA
Duncker Philipp (PD)	ALUFR
Edwards, David (DE)	FR
Gonzales, José Ramon (JRG)	CTFC
Harou, Patrica (PH)	INRA
Jactel, Hervé (HJ)	INRA
Mason, Bill	FR
Meredieu. Céline (CM)	INRA
Nabuurs, Gert-Jan (GJN)	ALTERRA
Najar, Mohamed (MN)	AFOCEL
Palahi, Marc (MP)	CTFC
Skovsgaard, J. P. (JPS)	KVL
Soares, Paula (PS)	ISA
Spiecker, Heinrich (HS)	ALUFR
Tomé, Margarida (MT)	ISA
Tojic, Karl (KT)	ALUFR
Trasobares, Antonio (AT)	EFI
Valinger, Eric (EV)	SLU
Van den Wyngaert, Isabel (IW)	ALTERRA
Zell Jürgen (JZ)	FVA

ANNEXE 2 – Definitions and terminology

ANNEXE 3 – Portuguese production forest region

PORTUGUESE STUDY REGION Susana Barreiro Marta Baptista-Coelho

Models Sele	ected Ne	eds of Impr	ovemen
À Area of Ma	ritime Pin	e - <mark>Pinus p</mark>	inaster
(10³ha)	Even-aged Stands	Uneven-aged Stands	Total
ure Stands	230.2	145.7	375.9
ominant Stands	59.2	68.3	127.4
ominated Stands	51.7	52.2	104.0
ew Stands	11.5	7.9	19.4
urnt Stands	13.4	9.3	22.7
lear cuts	4.9	2.0	6.9
	370.9	285.4	656.3
	Models Sele Area of Ma (10 ³ ha) ure Stands ominated Stands ominated Stands ew Stands urnt Stands lear cuts	Models Selected Ne Area of Maritime Pin (10 ³ ha) Even-aged Stands 230.2 ominant Stands 59.2 ominated Stands 51.7 ew Stands 11.5 urnt Stands 13.4 lear cuts 4.9	Even-aged Uneven-aged (10³ ha) Even-aged Stands (10³ ha) Even-aged Stands ure Stands 230.2 145.7 ominant Stands 59.2 68.3 ominated Stands 51.7 52.2 ew Stands 11.5 7.9 urnt Stands 13.4 9.3 lear cuts 4.9 2.0

Region Description	vlodels Sele	ected Ne	eds of Impr	ovement
Are	A of Eucal	yptus - Eu	icalyptus g	iobulus
- TA	(10³ha)	Stands	Stands	Total
Pure	e Stands	304.9	158.5	463.9
Dom	ninant Stands	46.2	36.0	82.2
Dom	ninated Stands	48.1	48.8	96.9
New	Stands	26.1	12.2	38.2
Buri	nt Stands	23.6	17.2	40.8
Clea	r cuts	13.0	4.3	17.3
Tota	il.	461.9	277.0	738.9
	read as 6			

Models Sele	ected Ne	eds of Impr	ovemen
Area of	f Cork Oal	< - Quercus	suber
(10 ³ ha)	Even-aged Stands	Uneven- aged Stands	Total
ire Stands	129.0	194.2	323.2
minant Stands	23.9	47.8	71.8
minated Stands	21.2	43.3	64.5
w Stands	4.0	1.7	5.7
ırnt Stands	0.4	0.4	0.7
ear cuts	0.1	0.1	0.2
	179.5	287.6	466.1
	Models Sele Area of (10 ³ ha) re Stands rminant Stands rminated Stands rminated Stands rminated Stands rminated Stands rminated Stands rminated Stands rminated Stands	Models Selected Ne Area of Cork Oal (10 ³ ha) Even-aged Stands re Stands 129.0 minart Stands 23.9 minated Stands 21.2 w Stands 4.0 urnt Stands 0.4 ear cuts 0.1	Even-aged Uneven-aged Stands (10³ha) Even-aged Uneven-aged Stands (10³ha) Even-aged Uneven-aged Stands Ire Stands 129.0 194.2 ominant Stands 23.9 47.8 ominated Stands 21.2 43.3 sw Stands 4.0 1.7 urnt Stands 0.4 0.4 ear cuts 0.1 0.1

Region Description Models Selected Needs of Improvement
1. Model Identification
WP member name: ISA (Instituto Superior de Agronomia)
<u>Country:</u> Portugal
Model name: Globulus 3.0
Year of publication: 2006
Author: Tomé, M., Soares, P., Oliveira, T.
2. Parameterization and calibration specifications
Geographical region: Portugal
Site specifications: all sites suitable for Eucalyptus globulus
Species: Eucalyptus globulus
Forest composition: Monospecific
<u>Stand structure</u> : Even aged stands
Silvicultural System: Clear cutting+coppice
Range of trees sizes: not applicable
Range of stand variables: until 20 years

Region Description	Models Selecte	d Needs of Imp	orovement
G	lobulus 3.0		
6. Sub-Models 6.1Modules	of the growth sir for state variabl	mulator es	
Driv	ing variables	Inicialization	
Age		Not relevant	
Cutting cycle		Not relevant	
Dominant he	ight	Yes	
Stand basal	area	Yes	
Number tree	s ha-1	Yes	
Number of s	tools ha-1	No	
Volume (Tot	al and merchantable)	Yes	

Region Description	Models Selected	Needs of Improvement
G	ilobulus 3.0	
<mark>6. Sub-Models</mark> 6.1 Modules	of the growth simu of or state variables	llator
	Derived variables	
Number of sh	noots before and after thinn	ing
Total volume	over bark	
Merchantable	e volume under bark	
Biomass (tota	al and per plant component	S)

Globulus 3.	0
6. Sub-Models of the growth 6.2Modules for control vi	ariables
Human induced	Environment
Human induced Initial stand density (1st rotation)	Environment Site index

Region Description Models Selected Needs of Improvement
Globulus 3.0
7. Inputs
Required:
climate variables (precipitation days, altitude, mean annual
temperature, annual precipitation, number of frost days per year) or
plot coordinates
≻site index
≻age
≻Initial stand density
≻Stand density after thinning
≻cutting cycle
Additional: all other state variables

Globulus	3.0
). References	
9.1 Model references	
References	Tomé et al., 2006 – Modelo Globulus 3.0. Publicações GIMREF. ISA
Model equations	Yes
Model modules/components	Yes
Model development methodology	Yes
Methodologies used in validation	Yes
Validation statistics	Yes
Sensitivity analysis	No

Description	Models Selected	Needs of Imj
G	ilobulus 3.0	
References	roforoncoc	
9.2 SUILWAIE	elelelices	2
Reference		GLOBLAND
Reference		GLOBLANE Yes
Reference Interactive use Batch-mode use	9	GLOBLANE Yes No
Reference Interactive use Batch-mode use Possibilities of c	e hanging control variables	GLOBLAND Yes No Yes
Reference Interactive use Batch-mode use Possibilities of c Interactive chan	e hanging control variables ging of equations	GLOBLAND Yes No Yes No
Reference Interactive use Batch-mode use Possibilities of c Interactive chan Interactive chan	e hanging control variables ging of equations ging of coefficients	GLOBLAND Yes No Yes No No
Reference Interactive use Batch-mode use Possibilities of c Interactive chan Interactive chan Saving of interin	e hanging control variables ging of equations ging of coefficients n results with continuation	GLOBLAND Yes No Yes No No Yes

Silvicultural System: Clear cutting

 Region Description
 Models Selected
 Needs of Improvement

 1. Model Identification
 WP member name: ISA (Instituto Superior de Agronomia

 Country: Portugal
 Model name:
 Modispinaster

 Year of publication: 2004
 Author: Fonseca, T.
 2. Parameterization and calibration specifications

 Geographical region: Portugal - Vale do Tâmega
 Site specifications: sites appropriate for Maritime pine

 Species: Pinus pinaster
 Forest composition: Monospecific

 Stand structure: even aged stands
 Stand structure: even aged stands

 Region Description
 Models Selected
 Needs of Improvement

 Modispinaster
 Model Selected
 Needs of Improvement

 3. Model Classification
 3.1 Model type: Empirical growth and yield model
 3.2 Model sub-type: Stand model +diameter distribution

 4. Primary unit of simulation: Stand
 5. Time step: Year

 Region Description
 Models Selected
 Needs of Improvement

 1. Model Identification
 WP member name: ISA (Instituto Superior de Agronomia)

 Country: Portugal
 Model name:
 Suber

 Year of publication: 2007
 Author: Tomé, M.et al.
 2. Parameterization and calibration specifications

 Geographical region: Portugal
 Site specifications: sites appropriate for cork oak
 Species: Quercus suber

 Forest composition: Monospecific
 Stand structure: Even and uneven aged stands
 Silvicultural System: several

 Region Description
 Models Selected
 Needs of Improvement

 Modispinaster > Does not have initialization functions for the driving variables – essential to use the model after clear cutting or in new areas

 > Does not have a module for biomass – essential to assess Greenhouse gas balance indicators*

 Modispinaster / Globulus

 > Do not have an economic module – essential to assess economic indicators*

 > Designed for even aged stands. Models for uneven aged stands for this region are needed.

 *Indicators assigned to be predicted directly or indirectly by growth models according to D2.5.1 Report on Models Requirements and Outputs

ANNEXE 4 – Aquitaine region

Connection between NFI Data and growth models

Conclusive remarks

Available for Eforwood project

- Different growth models for Pinus pinaster
- A stand growth simulator : Capsis
- Methods to connect NFI Data and growth models

Still to be achieved

- A regional simulator (available ?)
- Wood quality models
- Branch models

19

ANNEXE 5 – Baden-Württenberg region in Germany

- National Forest Inventory in Germany
 Extrapolation of NFI-Data with WEHAM (including Forest Growth, Harvesting and
- Prognosis of Assortments)
- Problems and further ideas/options

Results	Baden	-Württember	g	
 Total F 13.228 ~ 11 Tr ~ 150.0 360 m³ Increm Drain:1 	orest Area: 1,3 M Permanent sam rees/Plot 000 Measured tro ha Growing Sto ent: (1987-2002) 3 m³/ha/a (Cut a	Mio. Ha iple plots ees ock): 14 m³/ha/i and Mortality	a /)	
Abite III vig Biometrie vid listom atik	EFORWOOD WP 25 Works top, Barcelova	13. February 2007	lastila le for ForestGrowth	Sim
WEHAM				

Extrapolation of NFI-Data with WEHAM

- Model for
 - Growth
 - Harvesting
- · Based on Szenarios
- · Comparison of Szenarios

WEHAM	Simulationmodell WEHAM
• Progr	osis of Forest Development and
Potent • Timefr	ial Quantity of Harvest based on NFI
• Distar	tance-Independent Growth-Model
	Problem:
	• Stand <-> Plot
Abtelling Blometrie And Informatik	EFO RWOOD Institute for WVP 2.5 Works loop, Blarcelon a 13. Febru any 2007 Forest Growth

WEHAM	Output: St	andard-Szen	ario	
Norway	Spruce			
Growing • DB • DB	Stock H <40 cm Declin H >50 cm Increa	e of Growin se of Growi	g Stock ng Stoc	k
Harvestin • DB • DB • alto • cha	ng H <50 cm: Drast H >50 cm: Increa ogether: decreas ange of assortme	ic decrease ase e ents -> bigge	ər	
Able III og Blometrie	EFORWOOD WP 2.5 Works lop, Barcelon a	13. February 2007	liistitii te itor Forest Growth	Sim

Ideas				
 Bring tog accordir Mixtur Stage Site Ir Produce Informat Optimise aggregat 	gether ("aggregate" ig to e of Development dex an artifical stand o ion e future Harvesting- ited "quasi"-Stand-li) plot informat ut of the aggr Decisions ba nformation	tion egated sed on th	e
Able III og Blometrie und Informatik	EFORWOOD WP 25 Works lop, Barcelona	13. February 2007	listilite for ForestGrowth	Sim
Th	ank you for y	our atten	tion!	
RA Abtelling Blometrie	EFORWOOD WP 2.5 Works top, 8 arcelon a	13. February 2007	listitute tor Forest Growth	Sim

ANNEXE 6 – Västerbotten region in Sweden

			Are	as		
Forest type	Prportion inland, %	Inland, ha	Proportion coastal, %	Coastal, ha	Total proportion, %	Total, ha
Pine ¹	39.3	730 799	49.3	649 523	43.4	1 380 323
Spruce ¹	27.6	514 170	13.4	176 761	21.7	690 930
Birch ¹	4.8	89 533	3.5	46 182	4.3	135 715
Other ²	22.1	411 046	27.3	360 722	24.3	771 768
Lodgepole pine ¹	3.9	72 798	2.3	30 017	3.2	102 815
Bare ground	2.3	42 738	4.2	55 203	3.1	97 941
Total, ha		1 861 083		1 318 408		3 179 491

 $^1\text{Pine},$ spruce, birch and contorta dominated forests (>70% of basal area) $^2\text{Mixed}$ conifer forests (No conifer species >70% of basal area) + Mixed forests (between 40% and 60% broadleaved trees)

X

FORM	Cutting class	Proportion of area, %	SSES + Area, ha	Growing stock, m ³ /ha	ions
	A	4.2	133130	15	
<u>S</u>	B1	7.9	251617	10	
0	B2 + B3	20.2	642490	19	
	C + E	36.2	1149856	107	
	D1 + D2	31.5	1002398	154	
	All	100	3179491	92	
	Definitions: A (Regeneration, I B1 (Regeneration, J B2 (Young forest. N B3 (Young forest. N than 10 cm at 1.3 m)	oare ground) olant forest. Mean he Mean height between Mean height > 3 m. D	ight < 1.3 m) 1.3 m and 3 m) ominating and co	p-dominating trees sn	naller
*	C (Medium forest. 1.3 m) D1 (Adult forest. Ag D2 (Adult forest. Ag E (suitable for sing	Most dominating and le is lower than recor le above recommenc gle tree selection)	d co-dominating mmended clear-o led clear-cut age	of trees larger than 10 cut age) :)	0 cm at

-	Pine	Cutting class, pine A	Proportion of area, % 3.1	Area, ha 99366	Growing stock, m ³ /ha 8	
and the second second		B1	5.4	172350	6	
		B2 + B3	15.9	505262	8	
0		C + E	26.4	838662	57	
R		D1 + D2	13.4	427569	58	
5		All pine	64.3	2043209	41	
0		Cutting class,	Proportion of	Area,	Growing stock,	
	Spruce	spruce	area, %	ha	m³/ha	
	opruoc	A	1.1	33764	3	
D		B1	2.5	79268	1	
		B2 + B3	4.3	137228	3	
		C + E	9.8	311195	27	
		D1 + D2	18.1	574828	77	
		All spruce	35.7	1136283	35	
	Definitions: A (Regeneration B1 (Regeneration B2 (Young forest.	bare ground) plant forest. Me Mean height be	ean height < 1.3 tween 1.3 m and	m) 1 3 m)		
	B3 (Young forest	Mean height > 3	3 m Dominating	and co-domi	nating trees smaller	
	than 10 cm at 1 3 n	ייייט און				
		1) 5. March dama'n ati				
A.7	C (iviealum fores	t. Most dominati	ing and co-domi	nating of trees	s larger than 10 cm a	
100	1.3 m)					
	D1 (Adult forest. A	ge is lower than	n recommended	clear-cut age)	
	D2 Adult forest. A	de above recon	nmended clear-c	cut age)		SLU
	E (suitable for si	ale tree selectio	nn)			
		igic lice selection	011/			

	1 0/		
	area, %	ha	m ³ /ha
0-	4.0	127 160	11
3-	8.4	267 036	10
11-	10.6	336 974	14
21-	10.1	321 079	33
31-	6.8	216 172	64
41-	14.6	464 134	102
61-	10.3	327 437	141
81-	9.7	308 363	140
101-	8.5	270 215	154
121-	8.6	273 394	168
141	8.4	267 036	164

The proportion and area within Site index classes (m³/ha, year)

Productivity,	Proportion,	Area,	Groving stock,
m³/ha, yr	%	ha	m3/ha
0-	6.2	196 787	74
2-	31.3	996 412	83
3-	39.9	1 270 021	98
4-	18.1	574 052	99
5-	4.1	129 164	102
6-	0.3	8 886	154
7-	0.1	4 169	184

×

EFORWOOD

Growing stock per ha for each species within diameter classes

O-9 10-14 15-19 20-24 25-29 30-34 35-44 45- Total Proportio milj.m³
Display 1014 1313 2024 2023 3044 4,05 101al 101part milj_m3
Pine 7.7 17.8 30.8 30.3 21.3 14.1 8.4 0.9 131.4 43.6 Spruce 9.4 17.4 24.0 21.6 15.9 11.3 7.6 2.9 110.1 36.5 Contorta 1.1 0.7 0.1 0.0 2.0 0.7 2.0 0.7 Betula 12.5 13.6 10.5 5.5 2.4 0.6 0.3 45.4 15.1 Populus 0.1 0.3 0.4 0.3 0.2 0.2 0.3 0.1 1.9 0.6 Alnus 0.3 0.2 0.1 0.0 0.7 0.2 0.0 1.6 0.5 Salix 0.2 0.3 0.3 0.2 0.1 0.2 0.0 1.6 0.5 Sorbus 0.1 0.0 0.0 0.0 0.2 0.1 1.7 1.4 1.2 0.7 0.5 0.8 0.5 8.0 2.7
Spruce 9.4 17.4 24.0 21.6 15.9 11.3 7.6 2.9 110.1 36.5 Contorta 1.1 0.7 0.1 0.0 2.0 0.7 Betula 12.5 13.6 10.5 5.5 2.4 0.6 0.3 45.4 15.1 Populus 0.1 0.3 0.4 0.3 0.2 0.2 0.3 0.1 1.9 0.6 Alnus 0.3 0.2 0.1 0.0 0.7 0.2 0.3 0.1 1.9 0.6 Softw 0.2 0.3 0.3 0.2 0.1 0.7 0.2 Softw 0.1 0.0 0.0 0.0 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.7 0.2 0.1 0.7 0.2 0.1 0.7 0.2 0.1 0.7 0.2
Contorta 1.1 0.7 0.1 0.0 2.0 0.7 Betula 12.5 13.6 10.5 5.5 2.4 0.6 0.3 45.4 15.1 Populus 0.1 0.3 0.4 0.3 0.2 0.2 0.3 0.1 1.9 0.6 Alnus 0.3 0.2 0.1 0.0 0.7 0.2 Salix 0.2 0.3 0.3 0.3 0.2 0.1 0.7 0.2 Sorbus 0.1 0.0 0.0 0.0 0.2 0.1 0.2 0.1 0.6 Dry + 1.2 1.7 1.4 1.2 0.7 0.5 0.8 0.5 8.0 2.7 wind- trown 0.7 0.5 0.8 0.5 8.0 2.7
Betula 12.5 13.6 10.5 5.5 2.4 0.6 0.3 45.4 15.1 Populus 0.1 0.3 0.4 0.3 0.2 0.2 0.3 0.1 1.9 0.6 Alnus 0.3 0.2 0.1 0.0 0.7 0.2 Salix 0.2 0.3 0.3 0.2 0.1 0.2 0.1 0.5 Sorbus 0.1 0.0 0.0 0.0 0.2 0.1 0.2 0.1 0.5 Sorbus 0.1 0.0 0.0 0.0 0.2 0.1 0.2 0.1 Dry + 1.2 1.7 1.4 1.2 0.7 0.5 0.8 0.5 8.0 2.7
Populus 0.1 0.3 0.4 0.3 0.2 0.2 0.3 0.1 1.9 0.6 Alnus 0.3 0.2 0.1 0.0 0.7 0.2 Salix 0.2 0.3 0.3 0.2 0.1 0.2 0.0 1.6 0.5 Sorbus 0.1 0.0 0.0 0.0 0.2 0.1 0.2 0.1 Dry + 1.2 1.7 1.4 1.2 0.7 0.5 0.8 0.5 8.0 2.7 wind- trown <
Alnus 0.3 0.2 0.1 0.0 0.7 0.2 Salix 0.2 0.3 0.3 0.3 0.2 0.1 0.2 0.1 0.2 Sorbus 0.1 0.0 0.0 0.0 0.2 0.1 Dry + 1.2 1.7 1.4 1.2 0.7 0.5 0.8 0.5 8.0 2.7
Salix 0.2 0.3 0.3 0.3 0.2 0.1 0.2 0.0 1.6 0.5 Sorbus 0.1 0.0 0.0 0.0 0.2 0.1 Dry + 1.2 1.7 1.4 1.2 0.7 0.5 0.8 0.5 8.0 2.7
Sorbus 0.1 0.0 0.0 0.0 0.2 0.1 Dry + 1.2 1.7 1.4 1.2 0.7 0.5 0.8 0.5 8.0 2.7 wind- thrown 0.7 0.5 0.8 0.5 8.0 2.7
Dry + 1.2 1.7 1.4 1.2 0.7 0.5 0.8 0.5 8.0 2.7 Wind- thrown
wind- thrown
thrown
All 32.7 52.0 67.7 59.3 40.8 26.9 17.6 4.4 301.5 100

EFORWOOD

EFORWOOD

X

land	l and	d volu	ıme/l	ha		
Cutting	Inland,	Volume/ha,	Coastal,	Volume/ha,	Total, ha	Volume/ha,
	ha	m³/ha	ha	m³/ha		m³/ha
Clear felling	11 000	180	18 000	184	29 000	183
Thinning	8 000	43	26 000	70	34 000	63
Cleaning	16 000	4	21 000	6	38 000	5
Others	5 000	44	7 000	33	12 000	39
Total, ha	41 000	61	71 000	75	112 000	70

Annual cutting area on forest

SLU SLU

Cutting		Inland, Volume/yr,	Coastal, Volume/yr,	Total volume/y
Clearfalling	Dine	m ⁻ /yr	m²/yr	m ⁻⁷ yr
Clear teiling	Pine	52/531	1634972	2162503
	Birob	1201440	10/0600	2002297
Thinning	Dirch	100772	677224	207040
Thinning	Fille	120344	921040	900000
	Birob	120200	201629	941200
Cleaning	Dirch	10000	26076	510224
Cleaning	Fille	17104	10000	20492
	Birob	17 194	79210	29402
Othors	Dirch	32047	70319	1110000
Others	Spruco	71004	74974	03017
	Birch	16103	9017	25120
Total. m ³ /vr		2469714	5340102	7809817

Area	5	Single tree selection, ha	
	Not suitable	Suitable	Total
Inland	97331	22182	119513
Coast	68650	11025	79675
Total	165981	33207	199189
1% - 6% of tl	ne forest land is	suitable	

Area possible to use for natural regeneration (pine), ha

Potential areas for natural regeneration of pine are when the following criteria are met:

- 1. Ground vegetation myrtillus or worse.
- 2.Cutting class D.

EFORWOOD

- 3.More than 50% of basal area should be pine.
- 4.Sites should be situated \leq 300 m a.s.l.

ANNEXE 7 – Catalonia region in Spain

WP 2.5 Eforwood Meeting Vilanova 13-February-2007 "Methodologies to improve existing models for forest sustainability analysis at different temporal and spatial scales" Regional case: Catalonia Marc Palahí José Ramón González

	ACCIES III	Catalonia		
Species	Presence (ha)	Dominance (ha)	Homogeneus(ha)	Existences (m ^a)
Pinus sylvestris	353.777	239.092	170.051	26.262.735
Pinus halepensis	312.407	239.092	198.495	14.477 318
Pòus nigra	233.081	140.627	97.110	12.206.950
Quencus ilex	449.244	184.654	123.310	9.136.284
Pinus un inches	87.696	54.613	44.808	8.426346
Fagus sylvatica	61.149	28.726	20.868	5.189.403
Abies alba	26.775	13.346	9919	4.575 302
Pinus pinea	107.927	36.294	16.892	3.511.616
Quercus suber	116.118	62.937	38,484	3,306,435

Great abundance of mixed and uneven-aged forest

P. sylvestris as the regional case species

	200022011 E L									
The Im	port	anc	e o	t tir	nbe	er				
orest arow	th in	Cata	lonia	is e:	stima	ated	in 3.	500.I	000 m3	/vear
uttings onl	ly rea	ch 6:	21.6	00 m	З/уе	ar (D)eclai	ed 1	994-199	8)
🛛 📕 🗖 Real	cuttin	gs es	timat	ed to	be 3	0-50	% hig	her		
Timber cor	ntribut	te wi	th le	ss th	an tl	ne 30)% o	f the	forest	income
Timber cor (>70% h	tribut iuntin	te wi g, fisł	th le ning,	ss th musł	an ti nroom	ne 30 Ns, co)% o ırk, oʻ	f the thers	forest i)	income
Timber cor (>70% h	ntribut iuntini	te wi g, fisł	th le ning,	ss th musł	an ti nroom	ne 30 15, cc)% o irk, o	f the thers	forest i	income
Timber cor (>70% h	ntribut iuntini 1994	te wi g, fisł	th le ning, 1995	ss th must	an th room	ne 30 15, cc 1333)% o irk, o 2000	f the thers	forest)	income
Timber cor (>70% h	ntribut iuntini 1334 13,04	te wi g, fisł 1995 1991	th le: ning, 1995 10,11	ss th mush 1997 940	1990 1990 1990	ne 30 15, cc 1999 7, 6 9	0% o ork, o 2000	f the thers	forest) 1994-2000 11.00	income
Timber cor (>70% h Timber Otherproducti	ntribui iuntini 1994 13, IH 13, IH	te wi g, fisl 1995 1991 29,71	th le ning, 1995 10,11 21,91	ss th musł 1997 9,48 31,07	an th nroom 1998 10,13 34,31	ne 3(15, cc 1333 7, 5 13,11) % 0 irk, 0 2000 ¶]¶]3,11	f the thers 2001 QUI QUI 2001	forest 1994-2000 11.00 31.10	income
Timber cor (>70% h Timber Otherproducte Bector	1994 1994 13, # 13, 9 19, 90	te wi g, fisl 1995 1991 2971 49,13	th le: ning, 1995 10,11 21,51 11,17	ss th mush 1997 9,48 31,07 40,33	1998 1998 1998 19,13 34,31	ne 30 15, cc 1999 7,89 19,11 40,00) 96 O irk, O 2000 13,11 10,19	f the thers 2001 13,11 40,79	forest 1994-2000 11.00 31.10 +2.10	income

) E	ven-aged
	Hdom=f(SI,T)
	id = f()
	h = f(d,Ddom,Hdom)
	survival = f(d,competition,)
	Ineven-aged
	id = f(G,d,BAL,, NO SI)
	h = f(d,BAL, NO HDOM)
	survival = f(d,BAL,G)
	ingrowth $N(in) = f(G, N,)$

ANNEXE 8 – Craik forest in Scotland

GIS based modelling tools (GISMT) are used to assess the relationship between

the

- Economic
- Environmental
- Social

02006

Forest Research

Aspects of the forestry wood-chain and how these relate to the Eforwood indicators

Using *Craik Forest* in the Scottish Borders these relationships are explored and then applied as an aid to management decisions

This allows for the spatial prioritisation of

Biodiversity

Production

Recreation

At the forest scale

*selected for modelling simulation in GISMT

👫 Forest Research

Social Indicator: Recreation

People visitors of the forest

Visitor 1 Low Dispersal Ability Visitor 2 Intermediate Dispersal ability Visitor 3 **High** Dispersal ability

ANNEXE 9 – Oak in Lorraine region

Jens Peter Skovsgaard and Jean-François Dhôte University of Copenhagen / INRA

Danish growth models for forest management alternatives for oak in France

EFORWOOD meetings at Vilanova/Barcelona 13-15 Feb. 2007

Major tree species in Denmark

- Norway spruce 135,000 ha
- Beech 80,000 ha
- Oak more than 45,000 ha

Danish forest growth models

 All of our models are calibrated on longterm silvicultural experiments covering most classical thinning practices as well as an even wider range of stand treaments, including extremely heavy thinnings

Model concept

- Dynamic state-space approach (a so-called adaptive model)
- System of simultaneous difference equations incorporating site productivity, tree growth, stand dynamics, management effects and possible interactions directly in model parameters (one-year time steps)
- Stand or plot-specific calibration

Key variables and parameters

- Stand height (H_{100}, m)
- Stand basal area (G, m²/ha)
- Stem number (N, 100/ha)
- Tree diameter (*d*, m)
- Tree height (*h*, m)
- Site rate constant (a)
- A set of additional, global parameters

Stand growth model for oak

$$\Delta H_{50} = \mathbf{a}_{1} H_{50}^{a_{2}} \exp(-a_{3} H_{50} + a_{4} G)$$

$$\Delta G = b_{10} (\mathbf{a}_{1})^{b_{11}} G^{b_{2}} \exp(-b_{3} G - b_{4} H_{50}) + FV[G]$$

$$\Delta N = -c_{1} N^{c_{2}} \exp(c_{3} \sqrt{N} H_{50}) + FV[N]$$

Stand growth model for oak $\Delta H_{50} = \mathbf{a}_1 H_{50}^{a_2} \exp(-a_3 H_{50} + a_4 G)$ $\Delta G = b_{10} (\mathbf{a}_1)^{b_1} G^{b_2} \exp(-b_3 G - b_4 H_{50}) + FV[G]$ $\Delta N = -c_1 N^{c_2} \exp(c_3 \sqrt{N} H_{50}) + FV[N]$

/

Stand growth model for oak

$$\Delta H_{50} = \mathbf{a}_{1} H_{50}^{a_{2}} \exp(-a_{3} H_{50} + a_{4} G)$$

$$\Delta G = b_{10} (\mathbf{a}_{1})^{b_{11}} G^{b_{2}} \exp(-b_{3} G - b_{4} H_{50}) + FV[G]$$

$$\Delta N = -c_{1} N^{c_{2}} \exp(c_{3} \sqrt{N} H_{50}) + FV[N]$$

Stand growth model for oak $\Delta H_{50} = \mathbf{a}_{1} H_{50}^{a_{2}} \exp(-a_{3} H_{50} + a_{4} G)$ $\Delta G = b_{10} (\mathbf{a}_{1})^{b_{11}} G^{b_{2}} \exp(-b_{3} G - b_{4} H_{50}) + FV[G]$ $\Delta N = -c_{1} N^{c_{2}} \exp(c_{3} \sqrt{N} H_{50}) + FV[N]$

Individual tree growth for oak

 $\Delta d = \alpha_0 a_1^{\alpha_1} d^{\alpha_2} \exp(-\alpha_3 d) \exp(-\alpha_4 G^{1.5} N^{-0.5} d^{-1})$ $\Delta h = \beta_0 a_1^{\beta_1} h^{\beta_2} \exp(-\beta_3 h) \exp(-\beta_4 G^{0.5} N^{-0.5} d^{-1})$

If you don't trust us – then please trust our models, their quality is (almost) unbeatable

At best, reality is only an approximation to our models

Main scenarios

- Max. dendromass
- Max. timber volume
- Max. timber value
- and what about exogenous factors such as the oil price?
- or alternative 'exogenous', management objectives?

Other, 'exogenous' factors?

During more than 1000 years forest management or forest exploitation in Denmark was 'optimized' for naval oak timber

Regional Case : Oak - Lorraine

- France = a land of Oak and broadleaves, OK !
- High present productivity, esp. in North-East
- A challenge : resource use, opportunities/tensions
- Oak-Lorraine as an example
- Using model Fagacées under CAPSIS
- Work planned (2007)

ANNEXE 10 – Improvement of the EFISCEN model

Contents of database

East	West	North South	spp	age	sec à	mean H	mean D	min D	max D	stem nr	BA	GS	vol dead	NAI	harvested volu	area of repr
	16300	6465600	Pinus sylvi	17	1999	1.5	7.9	5.5	10.4	229	1	4.1	0	0.34	0	631.1
	16300	6465600	Pinus sylw	6 57	1999	12.5	1 21	8.4	39.3	1600	1 35	441.5	0	16.68	0	270.5
	11100	6472300	Pinus sylw	£ 79	2000	16.8	19	5.7	41.6	440	1 17	90	0	2.53	0	901.6
	14900	6477900	Betula spp	64	2003	13.5	12.9	5.1	32.8	1760	1.21	131.3	0.5	3.85	0	901.6
	17900	6477500	Temporarily	1	2003	0.5	1.		1.00		1.5		0	1.	0	901.6
	15300	6480900	Betula spp	67	2003	10	9.7	5.1	15.6	1920	1 12	55.2	1.9	1.8	0	901.6
	-3900	6495600	Betula spp	67	2002	9.2	10.7	1 6	15.9	1840	1 12	67.2	0	2.28	0	450.8
	2000	6494800	Betula spp	. 47	2002	12.9	13.1	1 5	24.5	1200	/ 10	89.5	. 3.8	2.81	0	901.6

Slight differences in reported variables

One harmonised dbs has been made

Simulation of forest development dW/dt = Growth + Regeneration - Mortality - Harvest

- unevenaged and mixed forests
- anticipated (changes in) management regimes
- anticipated (changes in) growth conditions
- changes in forest area and tree species
- applicable to large areas
- data available (NFI plot data)
- desired output: (input to calculate) sustainability indicators

DISTRIBUTIONS

Relation with other models Diameter (and height ?) distribution parameter prediction equations Physiological responses to climate change: effects on parameters Responses to new management Competition indices - mixture effects

