

Perspectives of hardwood research

State of research with examples from Germany and Switzerland

Holger Militz

University of Göttingen, Dept. of Wood Biology and Wood Products Göttingen/Germany

Frédéric Pichelin
BFH Bern University of Applied Sciences, Biel/Switzerland

Uwe Kies
InnovaWood, Brussels/Belgium

Contents

Perspectives of hardwood research

- 1. Intro: Forest trends in Europe
- 2. Hardwood research at BFH in Switzerland
- 3. Hardwood research at University of Göttingen in Germany
- 4. Conclusions

Forests in Europe

Major terrestrial ecosystem

EU: 117 million ha, 42% of land area

78 forest types with more than **100** tree species*

- 16 main coniferous (softwoods)

- **95** main broadleaved (hardwoods)

Ecosystem functions

Key role for natural cycles of soil, water, atmosphere, climate

Habitat for biodiversity

Socio-economic: wood = raw material for the forest-based sector Hengefeld et al. 2012, Brus et al. 2012

^{*} San-Miguel-Ayanz et al. 2016

Hardwoods availability and use

Wood resource trends: example of Germany

3rd German National Forest Inventory (BWI 3): changing trends since last 10 years (BWI2)

44% of forest soil stocked with hardwoods

Hardwoods / broadleaved + 7%

Softwoods / coniferous - 4%

Climate change impacts on forests

Long-term shift of ecological zones (precipitation, temperature)

Forest tree species composition will undergo large alterations Decrease of cultivation areas for European conifers

Higher occurrence of disturbances

Droughts, fire, storms, pests = higher risks, lower productivity

➤ Far-reaching <u>adaptation</u> of management systems to increase <u>resilience</u> of forest ecosystems is required

Growing importance of <u>hardwood research</u>

Potential distribution area of spruce

1970-2000 2100: **+2°C**

2100: **+4°C**

Schüler & Hoch - BFW 2019

Hardwood research at the BFH in Switzerland

Dr. Frédéric Pichelin

Bern University of Applied Sciences

Bern University of Applied Sciences Institute for Materials and Wood Technology

- Composite materials and furniture development
- Wood modification and surface treatment
- Adhesives Technology, Polymer Chemistry
- Wood chemistry and material emissions

Use of hardwood for the production of engineered wood products

Fagus Suisse: Engineered wood product made from beech

- Using the underexploited beech wood resource to produce a structural building material with very high strength (GL60)
- Developing a fully digitalized process to control the wood quality
- Use of the microwave technology to achieve a fast curing of the adhesive

Challenge 1: Wood sorting

Challenge 2: Wood assembly

- Final selection for the mono-lamellas prototypes
 - Flat joint
 - Zig-zag joint
 - Classic panel joint
 - Round tip fingers joint
 - Narrow tip finger joint
 - Whistle 2b and 3b joint
 - « V » joint

Bonding of hardwood

Influence of wood extractives on structural hard wood bonding with Two-Component Polyurethane

- Possible influence of extractives on wood bonding
- Surface contamination
- Wettability and permeability
- Chemical interactions

 $\frac{3}{4}$ $\frac{3}{4}$ $\frac{5}{6}$ $\frac{6}{7}$

Are extractives responsible for common adhesion problems of polyurethane adhesives when bonding hardwoods?

According to Mara (1980)

Modification of hardwood

Improving the fire resistance of beech and oak with a mineralization process

Fire resistance of beech with and without mineralization

CaOx Mineralization-distribution in European Oak

 \rightarrow Displayed specimen was impregnated with: Kox + CaCl₂; for 4h at 8 bar pressure

- Salts were found mainly in smaller vessels without tylosis (a)
- ▶ Relatively high amount of filled cell lumina serves as good indicator for a proper penetration of the mineralization agents (a).
- ▶ Completly filled cell lumina (b); as well as only deposits on the cell wall surfaces (c) were found

Use of hardwood for green chemistry

T-Rex

Figure 1 - T-REX objectives in a nutshell

T-REX provides a solution by a novel "Quality by Design" approach for production of target extractives (stilbenes, polyphenols, a.o.) and extractive-free fibers which both are essential for five new value chains created by T-REX.

Info clip: https://youtu.be/a34CoWQ0MRY

Tan-up Scale-up of nanofiltered chesnut tannin production for valorisation into high added value markets

Hardwood research at University of Göttingen in Germany

Prof. Dr. Holger Militz

Department of Wood Biology and Wood Products

• Employees: ~ 45

- Research topics:
 - Wood protection and modification
 - WPC und wood composites
 - Biological degradation & weathering / UV-protection
 - Coating and gluing
 - Mechanical properties
 - Wood quality

Hardwood research in Göttingen - projects

- → https://www.uni-goettingen.de/en/584672.html
- HoMaba Wood-based materials in mechanical engineering
- KlimaKleb Increasing the reliability of bonding and improving the emission behavior of beech glulam
- <u>CEMWOGEO</u> Cement coating of wood for geotechnical applications
- LVL Mast Development of material- and construction-optimized transmission pylons
- <u>Laubholz Innovationsverbund</u> ZIM-Kooperationsnetzwerk
- <u>Innobond</u> Development of material-adapted adhesive systems for use in finger-jointed and surface-bonded solid wood products manufactured from both untreated and modified native hardwoods for non-structural components
- Gerlau Utilisation-oriented investigations of low-value hardwood assortments for the production of innovative products
- Holzschutz-CT Characterization of penetration and distribution of protection systems in wood by X-ray based Micro Computed Tomography
- Nachwuchsgruppe Novel applications, markets, and technologies for native hardwood species
- 2TW Second Generation of ThermoWood
- <u>Fehrensen</u> Production of marketable, innovative products with improved material properties from native hardwoods through a modification process with fatty acid-modified melamine and dyes
- <u>InnoBuche</u> Innovative modified beech wood products Improved material properties in light of increasing beech wood production and high consumer demands to ensure sustainability

Hardwood research in Göttingen - doctoral theses

- → https://www.uni-goettingen.de/de/publications/105140.html
- Bicke S (2019) <u>Dimensionsstabile und pilzresistente Furnierwerkstoffe durch Zellwandmodifizierung mit niedermolekularem Phenol-Formaldehyd.</u> eDiss. Uni Göttingen, 206 S.
- Schlotzhauer P (2019) <u>Strength grading and selected strength properties of European hardwoods</u> eDiss. Uni Göttingen, 149 S.
- Wentzel M (2019) <u>Process optimization of thermal modification of Chilean Eucalyptus nitens plantation wood</u> eDiss. Uni Göttingen, 171 S.
- Fleckenstein M (2018) Technische Lignine als biobasiertes Ausgangsmaterial zur Substitution von erdölbasiertem Phenol in Phenol-Formaldehyd-Harzen. Sierke Verlag, 140 S.
- Lütkemeier B (2018) Kleben von modifiziertem Vollholz Gestaltung des Grenzbereichs zur Steuerung von Verklebungsmechnismen. Sierke Verlag, 253 S.
- Bastani A (2016) Bondability of modified wood. Cuvillier-Verlag, Göttingen, 138 S.
- Friese F (2014) Entwicklung von Sandwich-Spanplatten aus geringwertigem Buchenholz (*Fagus sylvatica* L.) und Holzsortimenten aus Kurzumtriebsplantagen zur Entlastung des Nadelholzmarktes. Sierke Verlag, 248 S

→ and numerous master & bachelor theses

Hardwood research in Göttingen - Main research directions

- Yield analysis
- (strength) grading
- Lamination/ finger-jointing/ glueing
- Durability/ preservation/ wood modification
- Wood composites
- New products

"FNR young research leader programme": hardwood research project (2012-2017)

Creation of new markets and applications for native hardwoods

FNR (Agency for Renewable Resources)

research project

Strength grading: doctoral thesis Philipp Schlotzhauer

- Distribution of strength grading parameters in different species
- Stength grading (optimized after tensile or bending strength)
- Strength testing (strucural timber and glulam)
 - Compression (parallel and perpendicular to grain)
 - Tension (parallel and perpendicular to grain)
 - Bending
- Yield analyses

- Species:
 - Ash (Fraxinus excelsior)
 - Birch (Betula pendula)
 - Lime (Tilia spp.)
 - Maple (Acer spp.)
 - Beech (Fagus sylvatica)
 - Oak (Quercus spp.)

Yield analysis birch wood use: doctoral thesis W. Hesselbach

Fig. 12: Scheme of the yield and the by-products.

Yield analysis birch wood use: example

Fig. 5: Determination of the quality-classes after RVR with diameters after results of a conducted survey

Fig. 6: Measurement of the total length and the section diameters to the rough-wood-border of 7cm m.R.

FNR research project "GerLau" (5 institutes)

Utilization-oriented investigations of low-value hardwood assortments for the production of innovative products

- Round wood potential analysis
- Value chain analysis
- Sawn wood products and insulation material
- particleboards
- Fiberboard technology

Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz

ZIM cooperation project "KlimaKleb"

> New beech beam (idea)

- Research:
 - Surface and finger-joint gluing
 - Humidity change response
 - Emissions

- Goal:
 - Process optimization to lower prices
 - Quality assurance

Hardwood gluing

- Functionalization of wood and wood-based materials with plasma treatment
 Plasma research group with HAWK
- Discoloration/staining problems in gluing (FNR Innobond)
- Finger jointing (new full scale equipment, doctoral thesis in progress)

Railway sleepers from beech wood

- New technology to substitute creosote for the protection of railway sleepers, timber bridges and utility poles (projects CreoSub/ ZIM Schwelle)
 - Cooperation with Norway/ UK/ Austria (ÖBB)
 - Cooperation with DB German Railway and impregnation company Fürstenberg
- Focus
 - Impregnation/process optimization
 - New wood preservatives/ combinations
 - Product characterization (sleeper)

Wood-based composites – veneer based

- Special products (cooperation with Blomberger Delignit, Becker, Metsä, Stora, Pollmeier)
 - Beech, birch, poplar, Eucalypt, pine, spruce, etc.
- Plywood and LVL
- Wood modification for outdoor use
 - New FNR project with TU Kaiserslautern (Prof. Graf) about acetylated beech LVL

Wood modification of beech veneers/ plywood/ LVL

Pollmeier Massivholz GmbH & Co. KG

- Laminated veneer lumber → parallel oriented veneers
- BauBuche®

Wood modification with phenolic resins

Deutsche Holzveredelung Schmeing GmbH & Co. KG

Synthetic resin densified wood

Wood modification of beech with phenolic resins

Delignit AG/ Blomberger Holzindustrie GmbH → Delignit®

- Trailerfloor
- Protection systems
- Synthetic resin densified wood

Wood modification of beech moulded wood for outside use

Becker Brakel - Fritz Becker GmbH & Co. KG

Wood-Polymer Composites (WPC)

Thermoplastics (matrix) mixed with wood particles/fibers

- Low value hardwoods
- Short rotation plantations
- Residual timber

Wood-based composites

Particle and fiberboards / insulation material

- Low density wood-based composites from short-rotation plantations (Kiri, Pappel)
- Utilization of residual timber

- Adaption of gluing
- Process development

Conclusions: What do we know?

- Characteristics determined (in labs, mostly little, error-free specimens)
 → mostly not worse or even better than softwoods
- Overall wood characteristics:
 - Strength values correlate with density (poplar ... oak)
 - Outside use without wood protection difficult (low natural durability)
- Low yields due to log characteristics (curves, taper, ovality, etc.)
- Adapted sawing technology necessary
- Production of high quality (glued) products possible, but : optimization/development is necessary in order to reduce costs of end products and ensure constant high quality

Conclusions: What do we know? → What do we have to do?

- Creation of special markets with special:
 - "low-value" products for special applications like low value beech wood as bottom plates for building multistory houses (low bending strength, but high perpendicular to grain compression strength)
 - Railway sleepers
 - Veneer based products → LVL
 - New products?
- Promoting standardization of hardwood products (products standards, ETAs, glue standards, etc.)
- Development of species-specific strength grading (optimized after bending strength of structural timber, compression strength perp. to grain of bottom plates, tension strength of glulam lamellas, etc.)
- Gathering knowledge (in Germany FNR workshops and "Laubholz-Innovationsverbund", in Switzerland BAFU, EU-projects, projects in France)

Perspectives of hardwood research

Conclusions

Conclusions: what we know

- Hardwood species represent a main share of Europe's forest resources and their importance in forestry will increase due to climate change. Large-scale adaptation of forests will foster more hardwoods.
- Hardwoods are <u>underexploited</u> in the field of construction and wood products. Taking
 in account the high resilience of hardwoods to climate change, they are a very good
 alternative to softwoods in many sectors.
- High-density hardwoods have interesting strength properties and are suitable for production of engineered wood products.
 - Quality assurance of the raw material is essential to achieve the highest product properties.
 - The bonding of hardwood is possible with standard wood adhesives; however the presence of extractives and the specific wood anatomy should be carefully evaluated.

Conclusions: what we know

- <u>Low-density hardwood</u> can be used to produce wood-based composites and woodpolymer composites.
- Hardwood can be <u>modified</u> with minerals or environmentally friendly agents, which enable a wide range of exterior applications, e.g. facades, bridges, railway sleepers, utility poles, etc.
- Side-stream products of the hardwood processing contain interesting <u>molecules</u> that can be extracted and valorized in different sectors.
 - → Extraction and refinery technologies = new business opportunities for the hardwood sawmill industry.

Conclusions: what we know

- Material characteristics have been determined (lab research: mostly based on small & error-free specimens)
 - → mostly not worse, but often even better than softwoods
- Overall wood characteristics
 - Strength values correlate with density (wide range from poplar ... oak)
 - Exterior use without wood protection difficult (low natural durability)
- Low yields due to log characteristics (curves, taper, ovality, etc.)
- Adapted sawing technology necessary
- Production of high quality (glued) products possible, but: optimization/development is necessary in order to reduce costs of end products and ensure constant high quality

Conclusions: what we need to do!

- 1. Creation of markets for special material characteristics :
 - <u>"Low-value" products</u> for special applications, e.g. low value beech wood as bottom plates for multi-storey houses (low bending strength, but high perpendicular strength to gain compression strength)
 - <u>Durable</u> products for exterior use, e.g. railway sleepers
 - Veneer based products, e.g. LVL
 - New products?
- 2. Species-specific <u>strength grading</u> to optimize material performance: bending (structural timber), compression (bottom plates), tension (glulam lamellas), etc.
- 3. Promote <u>standardization</u> of hardwood products (products, ETAs, glues, etc.)
- 4. Gathering and exchange knowledge, build up hardwoods research community

Prof. Dr. Holger Militz

University of Göttingen Department of Wood Biology and Wood Products

<u>hmilitz@gwdg.de</u> • <u>wood.uni-goettingen.de</u>

Dr. Frédéric Pichelin

Bern University of Applied Sciences Institute for Materials and Wood Technology

frederic.pichelin@bfh.ch • bfh.ch/ahb

Dr. Uwe Kies

InnovaWood asbl

<u>uwe.kies@innovawood.com</u> • <u>innovawood.com</u>

